[image: image1.png]FATİH UNIVERSITY – Department of Computer Engineering

Fatih University
Department of Computer Engineering

[image: image5.png]
CENG 463 Network Programming

Project Report
Project Name
First and Last Name 1, Student Number 1
First and Last Name 2, Student Number 2
First and Last Name 3, Student Number 3
Version 1.0

Start Date: 1 December 2003

16 January 2004
Preface
An introductory paragraph explaining the project and the structure of this document is given in this section.
Figures and Tables
The figures and tables of the document are given with their titles, numbers and page numbers in this section. The figures, tables and their page numbers should be updated before you take a print out. To update the figures and tables section, do a right-click on one section, and choose Update Field/Update Entire Table. When necessary you should also update the Contents table which is given in the following page. [DELETE THIS PRAGRAPH]
Figures
6Figure 4.1. The UML class diagrams of a sample project.

Figure 6.1. A sample project web home page (1).
11
Figure 6.2. A sample project web home page (2).
11

Tables
2Table 1.1. Project members and their roles.

Table 5.1. Project computers.
7

Contents
iiPreface

iiiFigures and Tables

iiiFigures

iiiTables

ivContents

11. Project Definition and Organization

11.1. Project Overview and Objectives

11.2. Critical Success Factors

11.3. Vision Statement

11.4. Risk Management

21.5. Project Members and Their Roles

32. Technical and Literature Background

43. Software Requirements and Specifications

43.1. A Simple Requirements Development Process

43.2. User Interface Design

54. System Architecture Design

54.1. Technical Description

54.2. System Architecture

54.2.1. Hardware Architecture

54.2.2. Software Architecture Block Diagrams

54.2. Reusability

75. Implementation

75.1. Development Platform and Software Tools

75.1.1. Hardware Platform

75.1.2. Software Platforms, Development Environments and Tools

75.2. Development and Testing Processes

75.2.1. Development Proces

75.2.2. Testing Process

75.3. Source Code and Its Documentation

85.3.1. Coding Standard and Minimum Documentation Requirements

85.3.2. Source Code

106. Appendix

106.1. References

116.2. Project Web Site

1. Project Definition and Organization
1.1. Project Overview and Objectives
This is the controlling and presenting section for managing the software project, and it defines the technical and managerial processes necessary to deliver the project requirements.
Give a short summary of the project objectives, project business case, the software to be delivered, major work products and delivery dates, delivery method (email, FTP, CD, etc.), delivery locations, major milestones, major activities, required resources, and top-level schedule and budget. Describe the relationship of this project to other projects, if appropriate.

1.2. Critical Success Factors

Give the key factors that will make the project a success. (e.g. delivery of software work products on time, writing 5,000 lines of code a month in a professional manner with documentation, learning targeted new topics and developing a working software, …)
1.3. Vision Statement
Before the project gets started, a team needs a common shared vision. The vision statement must be compelling and achievable. The vision statement should make it easy to determine what should go into the software and what should not. A vision statement such as “Create the world’s best word processor” might be motivating, but it will not provide much guidance to the development team other than telling them to throw every conceivable feature into the software. Alternatively, a vision statement such as “Create the world’s easiest-to-use word processor” provides just as elevating a mission for the team to form around but provides much better guidance about what features to exclude.
1.4. Risk Management
Practices recommended specifically for risk management include the following:

· Planning for risk management in the Software Development Plan (this document).

· Identification of a risk officer

· Use of a top 10 risks list.

· Creation of a risk-management plan for each risk

· Creation of an anonymous risk-reporting channel

The project should identify a risk officer, who is a member of the project (preferably someone other than the project manager) responsible for spotting emerging risks. Continually looking for potential problems, the risk officer tries to pick apart the risk-management plans for each risk. He or she should have management’s respect; otherwise, the risk officer simply becomes the project’s “designated pessimist”. Often a senior developer or tester makes a good risk officer.

A Top 10 Risks List, which is a list of the top risks the project faces at any given time, can be used as the key risk-management tool. The simple act of maintaining a list of current risks helps to keep risk management at the forefront of the project team’s mind. The project team should create a preliminary risks list before beginning requirements work and then keep the list current through the end of the project. It isn’t important that the list contain exactly 10 risks. It can contain 5 risks or 15. What is important is that it is maintained regularly.

1.5. Project Members and Their Roles
List the roles of individuals on the project. A project team, no matter what size, needs to differentiate among the various roles played by team members. On small projects, several roles may be performed by one person.
The mostly used project roles in a software project: Project manager, product manager, architect, user-interface designer, developer, quality assurance/tester, risk officer, end user documentation specialist.
Table 1.1. Project members and their roles.

	Project Member
	Roles

	
	

	
	

	
	

	
	

2. Technical and Literature Background

You should summarize technical documents and the research literature (for senior and graduate students and for some advanced studies) which are the background of your project. For technical or junior projects this section might be quite short. For senior projects you should examine and summarize the selected area, according to what are the important problems, to what degree are these problems understood and solved, how do different solutions interrelate, and what are the important issues for the future.
Original thoughts, solutions, insights are strongly encouraged and will be rewarded. Because of the time limits of the semester and our emphasis on software implementation, this stage is generally expected to be very limited, e.g. read a couple of papers and technical documents, think hard for awhile and write your project proposal.
3. Software Requirements and Specifications
This chapter must give all high level, generally non-technical, user requirements.
3.1. A Simple Requirements Development Process
· First identify a set of key end users and other people who collectively have the credibility to define the software that the team is building.

· Interview the end users and other related people to create a set of preliminary requirements.

· List the most important requirements; produce a requirements and specifications document and show this document to the users and other related people.

· If UML is used, draw Use Case diagrams and show these diagrams to the users and other related people and get their feedback and improve the requirements and specifications document and Use Case diagrams.
· Draw user interface drawings and show them to the users and other related people.

· Build simple, interactive user interface prototypes and show them to the users and other related people.
3.2. User Interface Design

The first prototypes of the program’s important graphical user interface should be developed at the beginning of the project. The GUI components can be designed using a drawing tool, like MS Visio.
4. System Architecture Design
The architecture chapter presents the diagram-intensive detailed system design. The complete static and dynamic view of the system is designed and given in this section.
4.1. Technical Description

A short technical description of the project is given here.

4.2. System Architecture

4.2.1. Hardware Architecture

If the developed project needs some special devices, hardware configurations or it is a network project, you should give the hardware architecture and special hardware configurations.
4.2.2. Software Architecture Block Diagrams

You should give the software architecture in this section. The architecture should describe what communications are allowed among the different subsystems. A good architecture holds communications among subsystems to a minimum.
Some architectural features of a software project are listed below:

· Client/server, peer-to-peer communication models

· Two-tier, tree-tier or n-tier architectures

· Database design
· Concurrency

· Message passing

· Special communication protocols
If UML is used in the software design process, more detailed use cases, package diagrams, class diagrams, sequence diagrams and activity diagrams of some important interactions are produced and given in this section. A figure showing UML class diagrams of a sample project is given in Figure 4.1. If your figures are big, put them in landscape form as shown in the figure.
4.2. Reusability
From the beginning to the end of the life cycle, the approach to software development recommended by the NASA SEL (Software Engineering Laboratory) and by many others stress the principle of reuse. The reuse of existing experience is a key ingredient to progress in any area. Without reuse, everything must be relearned and re-created.

In software development, reuse eliminates having to “reinvent the wheel” in each phase of the life cycle, reducing costs and improving both reliability and productivity. Planned reuse is a primary force behind such recent technologies as object-oriented design, Java, and C++/C#.

Analyze these key elements of a project for possible reuse:

· Software development process

· Requirements characteristics

· Software architecture and design concepts

· Test plans and procedures

· Code

· User documentation

· Staff
	[image: image2.png]

	Figure 4.1. The UML class diagrams of a sample project.

5. Implementation
In this section you will summarize your project implementation platform, software tools, development and testing processes used in the project. Finally, you may include the source code or some important parts of it with its code documentation.
You may include your final screen captures of your working program in this section if they are not put in the third section. It helps me to remember your demo, and shows that your program is working, at least partially! You can use a drawing program (like MS Visio) to draw your program logic and program flow. Don’t forget “A picture worths a thousand words”. Use similar ways (screen captures, drawings, pseudo code, comments) to explain what you have done with your code if needed.

5.1. Development Platform and Software Tools
5.1.1. Hardware Platform
Write the project computers and other hardware devices used in the project development in this section. You can use a similar table given in Table 5.1.
Table 5.1. Project computers.

	Project Member
	CPU / OS
	RAM
	Hard Disk
	Monitor

	
	
	
	
	

	
	
	
	
	

5.1.2. Software Platforms, Development Environments and Tools
Write the operating systems, software development environments and other tools used during the project development.
5.2. Development and Testing Processes
5.2.1. Development Proces

If some professional development processes are followed during the development of the project give brief information about the project processes and artifacts. Some examples are given below:
· The project’s lifecycle model (e.g., waterfall model, spiral model, evolutionary prototyping model, etc.)
· Some processes from heavy processes like CMM or SPICE

· Some processes from agile processes like Extreme Programming

· Some other best practices
5.2.2. Testing Process
Explain your testing process if you have any in this section.
5.3. Source Code and Its Documentation
“Write your program for people first, computers second”. (A rule from Code Complete, Steve McConnell, Microsoft Press, 1993.) This is especially true and very important when you are writing for your course, and for a big project. If your project report and programming style are not good, (class and variable names and code descriptions are not clear, and code indentation is bad), your instructor will not try to understand what you have done. And also, your product will not be able to be used by other people (maybe, by your project team members). Even sometimes you can not remember what you have done with your own code when you look at it later!
5.3.1. Coding Standard and Minimum Documentation Requirements
You should follow the Java style coding standard. Give your coding standard reference you applied in you project.
Look at some long more technical documents like Doug Lea’s Java Coding Standard page or Sun’s Java Code Conventions. There are many good common best practices and advices to prepare good software and documentation on similar documents.

Your software documentation should satisfy the following minimum requirements:
· First list the names of the packages, the files (classes) in each package you have written explaining the tasks of each file (class) with a couple of sentences (in JavaDoc comment style if you write in Java).

· Each file should have a comment header at the top with your name, a brief description of what the program is, and any special compiling instructions.

· Most classes (functions) should be short, and each should do only one thing.

· Each class (function) should have a brief comment describing what it does. It is not necessary to comment every line, and if your code is well written, it should not require a lot of in-line commenting. However, you should use comments to describe any unusual code or hard to follow code or complicated code, and describe any non-obvious variables.

· Classes, objects, methods (functions) and variables should have meaningful names, but you can use single letters like i for loop counters and such.

· Minimize the number of global variables and objects.
5.3.2. Source Code

The program source code or some parts of it may be included here. It is better to do it online with JavaDoc documentation and update it as needed.

If some code is included in this section, it must be in 8-point Courier New characters. Please pay attention to the code indentation when writing your code. If you use TAB characters for white spaces (code indentation) when writing your program in any editor, you can copy and then paste that program into your Microsoft Word document without any problem in general. After you have copied your programs into the project document, if there are some lines which are not aligned, correct them manually.

A very simple example source code is given below:

// Banking Project Files:

// Interface: Set of remote methods for a banking service.

BankingInterface.java

// Implements a remote banking object.

BankingImpl.java

// Defines the Account object.

Account.java

// Defines a generic banking exception for banking interface.

BankingException.java

// Defines a simple Insufficent Funds exception for banking interface.

InsufficientFundsException.java;

// Defines an exception for an invalid account and indicates

// which account was invalid. Also allows an error string.

InvalidAccountException.java;
//==
package chat;

/**

 * Title: ChatServer.java
 * Description: This is the server file. (Since this code example is short, it does not

 * need a long description.)
 * Copyright: Copyright (c) 2003

 * Company: Fatih University-Computer Engineering Dept

 * @author Haluk Gümüşkaya
 * @version 1.0

 */

import java.rmi.*;

import java.rmi.server.UnicastRemoteObject;

// Run the server application by creating ChatServerImpl object

public class ChatServer {

 public static void main(String[] argv) {

 System.setSecurityManager(new RMISecurityManager());

 try {

 ChatServerImpl implementation = new ChatServerImpl("ChatServices");

 System.out.println("Chat Server is ready");

 }

 catch (Exception e) {

 System.out.println("Exception occurred: " + e);

 }

 }

}
6. Appendix
6.1. References
List all the documents, books, Internet resources and other materials used and referenced in the project. This section is like the bibliography in a published book. You have to refer these references as needed from different places of this document. Especially Section 2 must have references like [1], [2][5] related to the background of the project.
1. L. Raman, “OSI Systems Network Management”, IEEE Communications Magazine, March 1998, pp. 46-53.

2. A. Pras, Network Management Architectures, Ph. D. Thesis, CTIT (Centre for Telematics and Information Technology) Ph. D-thesis series No. 95-02, Netherlands, 1995.

3. Summit Online for Enterprise Management: http://www.summitonline.com.

4. Lantimes Network Management Articles: http://www.lantimes.com/subject/netmgt.html.

5. International Telecommunication Union, “TMN Management Functions”, Rec. M. 3400, 1993, http://www.itu.int/itudoc/itu-t/rec/m/index.html.

6. ISO 9596, Information Technology(Open Systems Interconnection(Common Management Information Protocol, Int’l Organization for Standardization, Geneva, 1991.

6.2. Project Web Site
If you have a project web site, put the home page and some other important pages in this section, and briefly explain what you have posted in your web site. Some typical home pages of sample project web sites are given below.
[image: image3.png]
Figure 6.1. A sample project web home page (1).
[image: image4.png]
Figure 6.2. A sample project web home page (2).

1
ii

