CENG 577 Advanced Services in Communications

Course Overview

Halûk Gümüşkaya Fatih Üniversitesi Bilgisayar Mühendisliği Bölümü 34500 Büyükçekmece İstanbul

Outline

- What is this Course About?
- Technology Trends

Outline

- What is this Course About?
- Technology Trends

<text><list-item><list-item><list-item><list-item><list-item><list-item><list-item> -<section-header>

What is New? New *Pervasive Networking* Opportunity

- New things you can do *inside* the network
- Connecting end-points to "services" with processing embedded in the network fabric
- Not protocols but "agents" well-specified behavior, executing in places in the network
- Layer violation to enhance awareness acceptable: location, network topology, data format, protocol, subscriber identify, service in execution
- Scalable session and flow-oriented processing: measuring, monitoring, billing, prioritizing
- No single technical architecture likely to dominate: think overlays, system of systems

Distributed Service Architectures for Converged Networks Public Switched Telephone Network (PSTN) Internet/Public Switched Data Network (PSDN) Mobile Internet Converged Structures Distributed Service Architecture Services "-Ility" connectivity New call "features" Infrastructure services Enables distributed applications

What is this Course About? New Kind of Communications-Oriented Service Architecture

- Emerging, yet still developing, view of a new kind of communications-oriented service architecture in a highly heterogeneous environment
 - Rapid development/deployment of new services & apps Delivered to radically different end devices (phone, computer, info appliance) over diverse access networks (PSTN, LAN, Wireless, Cellular, DSL, Cable, Satellite)
 - Exploiting Internet-based technology core: clients/server, applications level routers, TCP/IP protocols, Web/XML formats
 - Beyond traditional "call processing" model: client-proxy server plus application-level partitioning
 - Built upon a new business model being driven by the evolution of the Internet: traditional "managed" networks and services versus emerging "overlay" networks and services structured on top of and outside of the above

Some Potential Disruptive Ideas About Network Architecture and Design*

- · Where should intelligence in the network reside?
- End-to-end model right conceptual framework?
- · How can faults be better isolated and diagnosed?
- · Abstractions of topology and performance
- Overlay approach to deploy disruptive technologies

* From "Looking over the Fence at Networks: A Neighbor's View of Networking Research" Computer Science Technical Board, National Research Council, USA

Course Structure

Seminar! We learn from each other!

- Avoid traditional lecture-oriented course
- Professor and more student-led presentations, discussions - Every student will develop materials and lead discussions
- on selected areas of technology; to be written up by mid-semester as a "**term paper**"
- Project: Design and evaluation of a distributed service architecture ?
- Project: depending on class size, we will have collaborating and competing teams develop a design and evaluation for future converged network service architecture
- 30% Class Discussion/Presentation/Contribution
- 40% Term Paper/Project
- 30% Final

Relevant Technologies (Partial List!) SIP Instant Messaging + Presence Leveraging PSTN architecture: AIN, SS-7 Mobile Location Services, LBS WAP

- SLAs
- UMTS/GPRS/Edge
 - Voice over IP with SIP Internet Multimedia Architecture (RTSP, SIP, SAP, RTP/RTCP, IPv6, IP Mobility, DiffServ, Multicast)
 - SyncML
- . Parlay, JTAPI
- . WAP
- Symbian/Embedded OS
 - Sun ONE, J2EE, Net, CORBA, TINA, RMI, SOA
- SMS/MMS + Other Messaging Platforms
- MGCP

10

12

- Radius/Diameter/Single Sign On BGP
- MPLS
- Core vs. Access Networking Technologies
- Mobey Formum
- Operator Wireless I AN
- DRM. PKI
- SCPTP/IETF Sigtran
- Architecture of Internet Data Centers and NAPs

11

Content	Comms	Productivity	Business
Information Entertainment			Intranet & Extranet
News	Messaging	Organizers	Access
Buy & Sell			Info Mgmt
Travel Music	E-Mail	Personal Assistants	Enterprise
TV	FAX	Tools	Comms
Fun	1777	10013	VPNs
Games Astrology	Rich Call	Misc	Telematics

Pervasive Computing = "Convergence" Via Services in the Network

- Not just about gadgets or access technologies, which are becoming ever more diverse
- But *services* and *applications*, and how the net can best support them anywhere, anytime
- Bottlenecks are near the edge, not the core
- Enabled by:
 - Computing embedded in communications fabric: distributed, wide-area, topology-aware
 - Per session characterization, processing, prioritization, monitoring, management, billing

After the PC ... True "Convergence"

- Not just about gadgets or access technologies
- About *services* and *applications*, and how the network can best support them
- Increasing, not decreasing, diversity
- Bottlenecks moving from core towards edge
- Enabled by computing embedded in communications fabric: wide-area, topology-aware, distributed computing

35

Internet vs. Telephone Net

- Strengths
 - Intelligence at ends
 - Decentralized control
 - Operates over heterogeneous access technologies
- Weaknesses
 - No differential service
- Variable performance delay
 New functions difficult to add since end nodes must be
- upgraded - No trusted infrastructure
- Strengths
 - No end-point intelligence
 - Heterogeneous devices
 - Excellent voice performance
- Weaknesses
 Achieves performance by overallocating resources
 - Difficult to add new services to "Intelligent Network" due to complex call model

37

39

 Expensive approach for reliability

Cellular Services Most Often Requested

After basic wireless telephony service

 Call Forwarding Paging Internet/E-Mail Traffic/Weather Conference Calling News 	37% 33% 24% 15% 13% 3%	Data Applications
	Source: CTIA Web Page Peter D. Hart Research Associates, March 1997	

38

Services and Applications: E-Commerce

- Consumer Services
 - Consumer-driven QoS: improved Web access "experience"
 - Converged digital video + web content (e.g., HVML)
 - Unified billing: pay-per-view movie plus ad-induced pizza purchase
 - Content delivery: file mover/software upgrades/digital audio/video
 Infrastructure storage: back-up, photos, mp3s, videos, TV tapings
 - Infrastructure storage, back-up, photos, mpss, videos, TV Tap
- Consumer-to-Business Services
 Web-based + (IP-based) Telephone
 - New kinds of integrated call centers: e.g., Lands End
- M-Commerce
 - Location-sensitive ad insertion
 - Unified billing for telecom access + purchases

Acknowledgements

- Slides have been based in-part upon original slides/notes of a number of people, including:
- Randy H. Katz, University of California, Berkeley
- Henning Schulzrinne, Columbia University
- Jim Kurose, University of Massachusetts

Δ.